22 research outputs found

    Greening Multi-Tenant Data Center Demand Response

    Get PDF
    Data centers have emerged as promising resources for demand response, particularly for emergency demand response (EDR), which saves the power grid from incurring blackouts during emergency situations. However, currently, data centers typically participate in EDR by turning on backup (diesel) generators, which is both expensive and environmentally unfriendly. In this paper, we focus on "greening" demand response in multi-tenant data centers, i.e., colocation data centers, by designing a pricing mechanism through which the data center operator can efficiently extract load reductions from tenants during emergency periods to fulfill energy reduction requirement for EDR. In particular, we propose a pricing mechanism for both mandatory and voluntary EDR programs, ColoEDR, that is based on parameterized supply function bidding and provides provably near-optimal efficiency guarantees, both when tenants are price-taking and when they are price-anticipating. In addition to analytic results, we extend the literature on supply function mechanism design, and evaluate ColoEDR using trace-based simulation studies. These validate the efficiency analysis and conclude that the pricing mechanism is both beneficial to the environment and to the data center operator (by decreasing the need for backup diesel generation), while also aiding tenants (by providing payments for load reductions).Comment: 34 pages, 6 figure

    Distributional Analysis for Model Predictive Deferrable Load Control

    Get PDF
    Deferrable load control is essential for handling the uncertainties associated with the increasing penetration of renewable generation. Model predictive control has emerged as an effective approach for deferrable load control, and has received considerable attention. In particular, previous work has analyzed the average-case performance of model predictive deferrable load control. However, to this point, distributional analysis of model predictive deferrable load control has been elusive. In this paper, we prove strong concentration results on the distribution of the load variance obtained by model predictive deferrable load control. These concentration results highlight that the typical performance of model predictive deferrable load control is tightly concentrated around the average-case performance.Comment: 12 pages, technical report for CDC 201

    Opportunities for Price Manipulation by Aggregators in Electricity Markets

    Get PDF
    Aggregators are playing an increasingly crucial role in the integration of renewable generation in power systems. However, the intermittent nature of renewable generation makes market interactions of aggregators difficult to monitor and regulate, raising concerns about potential market manipulation by aggregators. In this paper, we study this issue by quantifying the profit an aggregator can obtain through strategic curtailment of generation in an electricity market. We show that, while the problem of maximizing the benefit from curtailment is hard in general, efficient algorithms exist when the topology of the network is radial (acyclic). Further, we highlight that significant increases in profit are possible via strategic curtailment in practical settings

    Optimal Charging of Electric Vehicles in Smart Grid: Characterization and Valley-Filling Algorithms

    Full text link
    Electric vehicles (EVs) offer an attractive long-term solution to reduce the dependence on fossil fuel and greenhouse gas emission. However, a fleet of EVs with different EV battery charging rate constraints, that is distributed across a smart power grid network requires a coordinated charging schedule to minimize the power generation and EV charging costs. In this paper, we study a joint optimal power flow (OPF) and EV charging problem that augments the OPF problem with charging EVs over time. While the OPF problem is generally nonconvex and nonsmooth, it is shown recently that the OPF problem can be solved optimally for most practical power networks using its convex dual problem. Building on this zero duality gap result, we study a nested optimization approach to decompose the joint OPF and EV charging problem. We characterize the optimal offline EV charging schedule to be a valley-filling profile, which allows us to develop an optimal offline algorithm with computational complexity that is significantly lower than centralized interior point solvers. Furthermore, we propose a decentralized online algorithm that dynamically tracks the valley-filling profile. Our algorithms are evaluated on the IEEE 14 bus system, and the simulations show that the online algorithm performs almost near optimality (<1<1% relative difference from the offline optimal solution) under different settings.Comment: This paper is temporarily withdrawn in preparation for journal submissio

    Online Algorithms: From Prediction to Decision

    Get PDF
    Making use of predictions is a crucial, but under-explored, area of sequential decision problems with limited information. While in practice most online algorithms rely on predictions to make real time decisions, in theory their performance is only analyzed in simplified models of prediction noise, either adversarial or i.i.d. The goal of this thesis is to bridge this divide between theory and practice: to study online algorithm under more practical predictions models, gain better understanding about the value of prediction, and design online algorithms that make the best use of predictions. This thesis makes three main contributions. First, we propose a stochastic prediction error model that generalizes prior models in the learning and stochastic control communities, incorporates correlation among prediction errors, and captures the fact that predictions improve as time passes. Using this general prediction model, we prove that Averaging Fixed Horizon Control (AFHC) can simultaneously achieve sublinear regret and constant competitive ratio in expectation using only a constant- sized prediction window, overcoming the hardnesss results in adversarial prediction models. Second, to understand the optimal use of noisy prediction, we introduce a new class of policies, Committed Horizon Control (CHC), that generalizes both popular policies Receding Horizon Control (RHC) and Averaging Fixed Horizon Control (AFHC). Our results provide explicit results characterizing the optimal use of prediction in CHC policy as a function of properties of the prediction noise, e.g., variance and correlation structure. Third, we apply the general prediction model and algorithm design framework to the deferrable load control problem in power systems. Our proposed model predictive algorithm provides significant reduction in variance of total load in the power system. Throughout this thesis, we provide both average-case analysis and concentration results for our proposed online algorithms, highlighting that the typical performance is tightly concentrated around the average-case performance.</p

    Distributed Optimization via Local Computation Algorithms

    Get PDF
    We propose a new approach for distributed optimization based on an emerging area of theoretical computer science -- local computation algorithms. The approach is fundamentally different from existing methodologies and provides a number of benefits, such as robustness to link failure and adaptivity in dynamic settings. Specifically, we develop an algorithm, LOCO, that given a convex optimization problem P with n variables and a "sparse" linear constraint matrix with m constraints, provably finds a solution as good as that of the best online algorithm for P using only O(log(n+m)) messages with high probability. The approach is not iterative and communication is restricted to a localized neighborhood. In addition to analytic results, we show numerically that the performance improvements over classical approaches for distributed optimization are significant, e.g., it uses orders of magnitude less communication than ADMM

    Distributed Optimization via Local Computation Algorithms

    Get PDF
    We propose a new approach for distributed optimization based on an emerging area of theoretical computer science -- local computation algorithms. The approach is fundamentally different from existing methodologies and provides a number of benefits, such as robustness to link failure and adaptivity in dynamic settings. Specifically, we develop an algorithm, LOCO, that given a convex optimization problem P with n variables and a "sparse" linear constraint matrix with m constraints, provably finds a solution as good as that of the best online algorithm for P using only O(log(n+m)) messages with high probability. The approach is not iterative and communication is restricted to a localized neighborhood. In addition to analytic results, we show numerically that the performance improvements over classical approaches for distributed optimization are significant, e.g., it uses orders of magnitude less communication than ADMM

    Opportunities for Price Manipulation by Aggregators in Electricity Markets

    Get PDF
    Aggregators are playing an increasingly crucial role for integrating renewable generation into power systems. However, the intermittent nature of renewable generation makes market interactions of aggregators difficult to monitor and regulate, raising concerns about potential market manipulations. In this paper, we address this issue by quantifying the profit an aggregator can obtain through strategic curtailment of generation in an electricity market. We show that, while the problem of maximizing the benefit from curtailment is hard in general, efficient algorithms exist when the topology of the network is radial (acyclic). Further, we highlight that significant increases in profit can be obtained through strategic curtailment in practical settings

    Opportunities for Price Manipulation by Aggregators in Electricity Markets

    Get PDF
    Aggregators of distributed generation are playing an increasingly crucial role in the integration of renewable energy in power systems. However, the intermittent nature of renewable generation makes market interactions of aggregators difficult to monitor and regulate, raising concerns about potential market manipulation by aggregators. In this paper, we study this issue by quantifying the profit an aggregator can obtain through strategic curtailment of generation in an electricity market. We show that, while the problem of maximizing the benefit from curtailment is hard in general, efficient algorithms exist when the topology of the network is radial (acyclic). Further, we highlight that significant increases in profit are possible via strategic curtailment in practical settings

    Opportunities for Price Manipulation by Aggregators in Electricity Markets

    Get PDF
    Aggregators are playing an increasingly crucial role for integrating renewable generation into power systems. However, the intermittent nature of renewable generation makes market interactions of aggregators difficult to monitor and regulate, raising concerns about potential market manipulations. In this paper, we address this issue by quantifying the profit an aggregator can obtain through strategic curtailment of generation in an electricity market. We show that, while the problem of maximizing the benefit from curtailment is hard in general, efficient algorithms exist when the topology of the network is radial (acyclic). Further, we highlight that significant increases in profit can be obtained through strategic curtailment in practical settings
    corecore